Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials

Author:

LORIA Paul1,MILLER Susanne1,FOLEY Michael1,TILLEY Leann1

Affiliation:

1. Department of Biochemistry, La Trobe University, Bundoora, 3083, Victoria, Australia

Abstract

The malaria parasite feeds by degrading haemoglobin in an acidic food vacuole, producing free haem moieties as a by-product. The haem in oxyhaemoglobin is oxidized from the Fe(II) state to the Fe(III) state with the consequent production of an equimolar concentration of H2O2. We have analysed the fate of haem molecules in Plasmodium falciparum-infected erythrocytes and have found that only about one third of the haem is polymerized to form haemozoin. The remainder appears to be degraded by a non-enzymic process which leads to an accumulation of iron in the parasite. A possible route for degradation of the haem is by reacting with H2O2, and we show that, under conditions designed to resemble those found in the food vacuole, i.e., at pH 5.2 in the presence of protein, free haem undergoes rapid peroxidative decomposition. Chloroquine and quinacrine are shown to be efficient inhibitors of the peroxidative destruction of haem, while epiquinine, a quinoline compound with very low antimalarial activity, has little inhibitory effect. We also show that chloroquine enhances the association of haem with membranes, while epiquinine inhibits this association, and that treatment of parasitized erythrocytes with chloroquine leads to a build-up of membrane-associated haem in the parasite. We suggest that chloroquine exerts its antimalarial activity by causing a build-up of toxic membrane-associated haem molecules that eventually destroy the integrity of the malaria parasite. We have further shown that resistance-modulating compounds, such as chlorpromazine, interact with haem and efficiently inhibit its degradation. This may explain the weak antimalarial activities of these compounds.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3