Author:
Roeder L M,Tildon J T,Stevenson J H
Abstract
The rates of conversion into 14CO2 of D-(-)-3-hydroxy[3-14C]butyrate, [3-14C]acetoacetate, [6-14C]glucose and [U-14C]glutamine were measured in the presence and absence of unlabelled alternative oxidizable substrates in whole homogenates from the brains of young and adult rats. The addition of unlabelled glutamine resulted in decreased 14CO2 production from [6-14C]glucose in brain homogenates from both young and adult rats. In contrast, glucose had no effect on [U-14C]glutamine oxidation. In suckling animals, both 3-hydroxybutyrate and acetoacetate decreased the rate of oxidation of [6-14C]glucose, but in adults only 3-hydroxybutyrate had an effect, and to a lesser degree. The addition of unlabelled glucose markedly enhanced the rates of oxidation of both ketone bodies in adult brain tissue and had little or no effect in the young. The rate of production of 14CO2 from [U-14C]glutamine was increased by the addition of unlabelled ketone bodies in brain homogenates from young, but not from adult rats. In the converse situation, unlabelled glutamine added to 14C-labelled ketone bodies diminished 14CO2 production in young rats, but had no effect in adult animals. These results revealed a complex age-dependent pattern of interaction in which certain substrates apparently competed with each other, whereas an enhanced rate of 14CO2 production was found with others.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献