myo-Inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and d-chiro-inositol

Author:

ARNER Ryan J.1,PRABHU K. Sandeep1,THOMPSON Jerry T.1,HILDENBRANDT George R.1,LIKEN Andrew D.1,REDDY C. Channa1

Affiliation:

1. Department of Veterinary Science and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, U.S.A.

Abstract

myo-Inositol oxygenase (MIOX) catalyses the first committed step in the only pathway of myo-inositol catabolism, which occurs predominantly in the kidney. The enzyme is a non-haem-iron enzyme that catalyses the ring cleavage of myo-inositol with the incorporation of a single atom of oxygen. A full-length cDNA was isolated from a pig kidney library with an open reading frame of 849bp and a corresponding protein subunit molecular mass of 32.7kDa. The cDNA was expressed in a bacterial pET expression system and an active recombinant MIOX was purified from bacterial lysates to electrophoretic homogeneity. The purified enzyme displayed the same catalytic properties as the native enzyme with Km and kcat values of 5.9mM and 11min−1 respectively. The pI was estimated to be 4.5. Preincubation with 1mM Fe2+ and 2mM cysteine was essential for the enzyme's activity. d-chiro-Inositol, a myo-inositol isomer, is a substrate for the recombinant MIOX with an estimated Km of 33.5mM. Both myo-inositol and d-chiro-inositol have been implicated in the pathogenesis of diabetes. Thus an understanding of the regulation of MIOX expression clearly represents a potential window on the aetiology of diabetes as well as on the control of various intracellular phosphoinositides and key signalling pathways.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3