Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase

Author:

Hawkes T R,Bray R C

Abstract

An assay method is described for measurement of absolute concentrations of the molybdenum cofactor, based on complementation of the defective nitrate reductase (‘apo nitrate reductase’) in extracts of the nit-1 mutant of Neurospora crassa. A number of alternative methods are described for preparing, anaerobically, molybdenum-cofactor-containing solutions from sulphite oxidase, xanthine oxidase and desulpho xanthine oxidase. For assay, these were mixed with an excess of extract of the nit-1 mutant, incubated for 24 h at 3.5 degrees C then assayed for NADPH:nitrate reductase activity. In all cases, the specific activity of the molybdenum cofactor, expressed as mumol of NO2-formed/min per ng-atom of Mo added from the denatured molybdoenzyme, was 25 +/- 4, a value that agrees with the known catalytic activity of the nitrate reductase of wild-type Neurospora crassa. This indicates that, under our conditions, there was quantitative transfer of the molybdenum cofactor from denatured molybdoenzyme to yield fully active nitrate reductase. Comparable cofactor assay methods of previous workers, apparently indicating transfer efficiencies of at best a few per cent, have never excluded satisfactorily the possibility that cofactor activity arose, not from stoichiometric constituents of the molybdoenzymes, but from contaminants. The following factors were investigated separately in developing the assay:the efficiency of extraction of the cofactor from the original enzyme, the efficiency of the complementation reaction between cofactor and apo nitrate reductase, and the assay of the resultant nitrate reductase, which must be carried out under non-inhibitory conditions. Though the cofactor is unstable in air (t1/2 about 15 min at 3.5 degrees C), it is stable when kept anaerobic in the presence of sodium dithionite, in aqueous solution or in dimethyl sulphoxide (activity lost at the rate of about 3%/24 h at 20-25 degrees C). Studies of stabilities, and investigations of the effect of added molybdate on the assay, permit conclusions to be drawn about the ligation of molybdenum to the cofactor and about steps in incorporation of the cofactor into the apoenzyme. Though the development of nitrate reductase activity is slow at 3.5 degrees C (t1/2 1.5-3 h) the complementation reaction may be carried out in high yield, aerobically. This is ascribed to rapid formation of an air-stable but catalytically inactive complex of the cofactor, as a precursor of the active nitrate reductase.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3