A caffeine- and ryanodine-sensitive intracellular Ca2+ store can act as a Ca2+ source and a Ca2+ sink in PC12 cells

Author:

Barry V A1,Cheek T R1

Affiliation:

1. AFRC Laboratory of Molecular Signalling, Department of Zoology, Downing Street, Cambridge CB2 3EJ, U.K.

Abstract

We have investigated the modulation of stimulus-induced changes in intracellular Ca2+ concentration ([Ca2+]i) by a caffeine-and ryanodine-sensitive Ca2+ store in PC12 cells. In populations of fura-2-loaded cells, caffeine cause a concentration-dependent increase in [Ca2+]i that was saturable, reversible and inhibited in a use-dependent fashion by ryanodine. Maximal Ca2+ release occurred with 40 mM caffeine, with an EC50 of 13 mM caffeine and a Hill coefficient (h) of 2.7, indicating that the release mechanism was co-operative. Pretreatment of intact cell populations with increasing concentrations of caffeine in nominally Ca(2+)-free medium inhibited the subsequent Ca2+ response to a maximal concentration of ATP, in a dose-dependent manner. In permeabilized cells, a maximal concentration (40 microM) of InsP3 still released Ca2+ in the presence of a supramaximal concentration (50 mM) of caffeine, whereas caffeine was unable to release Ca2+ after the InsP3-sensitive store had been completely emptied. These data suggest that PC12 cells contain a uniquely InsP3-sensitive Ca2+ store, and a store that is sensitive to both InsP3 and caffeine. Depletion of the caffeine-sensitive Ca2+ store by caffeine and ryanodine pretreatment in intact cells attenuated the Ca2+ response to ATP, but not to 55 mM K+, suggesting that the caffeine-sensitive Ca2+ store acts as a Ca2+ source after ATP stimulation, but not after depolarization with 55 mM K+. Pretreatment of intact cells with ATP and ryanodine resulted in a use-dependent block of both caffeine- and ATP-mediated Ca2+ release, confirming that ATP stimulation of PC12 cells brings about activation of ryanodine receptors. The rate of recovery, but not the magnitude or rate of onset, of the depolarization-induced [Ca2+]i transient was modulated by the state of filling of the caffeine-sensitive Ca2+ store such that recovery was prolonged if the store was either full, or empty and unable to refill. We conclude that the caffeine- and ryanodine-sensitive Ca2+ store can act as a Ca2+ source and a Ca2+ sink in PC12 cells, and that its role may in part be governed by the nature of the stimulating agent.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3