Differential stimulation of S-adenosylmethionine decarboxylase by difluoromethylornithine in the rat colon and small intestine

Author:

Halline A G1,Dudeja P K1,Brasitus T A1

Affiliation:

1. Departments of Medicine, The University of Chicago and Michael Reese Hospitals, Pritzker School of Medicine of the University of Chicago, Chicago, IL 60637, U.S.A.

Abstract

The effects of chronic inhibition of ornithine decarboxylase (ODC) by the specific inhibitor difluoromethylornithine (DFMO) in the rat colon and small intestine on mucosal contents of polyamines, decarboxylated S-adenosylmethionine (decarboxylated AdoMet) and S-adenosylmethionine decarboxylase (AdoMet decarboxylase) activity were studied. Administration of 1% DFMO in the drinking water for 10 or 15 weeks resulted in inhibition of ODC and decreases in intracellular putrescine and spermidine contents in both proximal and distal segments of small intestine and colon. At both time points DFMO administration resulted in a dramatic stimulation of AdoMet decarboxylase activity and a rise in decarboxylated AdoMet content in the proximal and distal small-intestinal segments compared with controls, which was not seen in either colonic segment of DFMO-treated animals. This differential stimulation of AdoMet decarboxylase by DFMO in the small intestine and colon could not be entirely explained on the basis of differences in polyamine contents, which are known to regulate this enzyme activity. Kinetic and inhibition studies of AdoMet decarboxylase in control small and large intestine revealed that: (1) there was no difference in Vmax. values between the tissues; (2) the Km for AdoMet was higher in the small intestine than in the colon; and (3) the Ki for product inhibition by decarboxylated AdoMet was higher in the small intestine than in the colon. These results suggest that the differential stimulation of AdoMet decarboxylase by DFMO in the small intestine and colon may be due to different isoenzymes and could play a significant role in the regulation of polyamine contents throughout the gut.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3