Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport

Author:

BRITTON Hubert G.1

Affiliation:

1. 1Department of Cell Chemistry, Instituto de Investigaciones Citologicas de la Fundacion Valenciana de Investigaciones Biomedicas, Amadeo de Saboya 4, 46010 Valencia, Spain

Abstract

In a single-substrate–single-product enzyme reaction, ‘countertransport’, which indicates that the ratio of the forward to the reverse fluxes is less than that expected from the Independence Relationship, is regarded as strong evidence for the free enzyme existing in two states, one of which combines with the substrate and the other with the product, with a slow isomerization between the two conditions. To account for positive and negative co-operativity, found with some enzymes, additional induced-fit reactions bypassing at least part of the isomerization have been proposed. The effects of such additional steps have been examined, using two models: in one, (a), the enzyme passes through an intermediate state during its isomerization, and both substrate and product may react with this state to give rise to the binary complexes; in the other, (b), the substrate may react with the enzyme as soon as the product is released and similarly with the reverse reaction, the isomerization thereby being bypassed completely. In the presence of such additional steps, the following can be concluded. (i) The data should be analysed in terms of the flux ratios, rather than observation of the amount of countertransport. (ii) The additional bypassing steps markedly change the pattern of dependence of the flux ratio on substrate and product concentrations. At high substrate and product concentrations, the ratio remains very dependent on how far the reaction is from equilibrium, and the kinetics are asymmetric. (iii) The mechanism causing the flux ratio to be less than that given by the Independence Relationship differs from that previously described, in that, at least in part, it arises from a 1:1 exchange between substrate and product. (iv) Despite this novel mechanism, there must be two states of the enzyme, combining respectively with substrate and product, and these must not be in rapid exchange. Thus countertransport remains very strong evidence for the existence of two such states. It is no longer a requirement that the enzyme states should be linked by an isomerization step. (v) Under no conditions can the flux ratio exceed that given by the Independence Relationship. (vi) Under unusual conditions the isomerization of the enzyme in model (b) may be undetectable by steady-state kinetics. (vii) Measurements of the coefficients in the flux ratio equations enable limits to be set to certain ratios of the rate constants. In addition to these conclusions, methods are described for (viii) analysing flux ratio data for the presence of induced fit steps and (ix) determining flux ratios from induced transport curves. The derivation of steady state–velocity equations show that: (x) both models may give rise to positive and negative ‘co-operativity’ and sigmoid substrate–velocity curves, but that, under conditions giving rise to sigmoid curves, the deviation of the flux ratio from that required by the Independence Relationship may be difficult to demonstrate because of the asymmetry of the system. Under all conditions the fluxes at equilibrium should obey hyperbolic kinetics.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3