Separation of important new platelet glycoproteins (GPIa, GPIc, GPIc*, GPIIa and GMP-140) by f.p.l.c. Characterization by monoclonal antibodies and gas-phase sequencing

Author:

Catimel B12,Parmentier S1,Leung L L K3,McGregor J L3

Affiliation:

1. INSERM Unité 331, Faculté de Médecine Alexis Carrell, rue Guillaume Paradin, F-69372 Lyon Cedex 08, France.

2. Institute Pasteur de Lyon, avenue Tony Garnier, 69365 Lyon Cedex 07, France

3. Stanford Medical School, Division of Hematology, Stanford, CA 94305, U.S.A.

Abstract

A large number of membrane glycoproteins (around 40) are present on the surface of human blood platelets. Some of these glycoproteins are expressed in relatively small amounts, and their functions, as well as their structure, remain to be elucidated. The aim of the present study was to separate rapidly, under non-denaturing conditions, and characterize minor glycoproteins such as Very Late Antigens (VLA) (GPIa, GPIc, GPIc* and GPIIa) and GMP-140 (also known as PADGEM). VLAs and GMP-140 are respectively members of the integrin and selectin families. Platelet membrane glycoproteins were separated by wheat-germ agglutinin lectin affinity and Mono Q anion-exchange f.p.l.c. Peaks bearing isolated glycoproteins were electrophoresed on one- or two-dimensional SDS/polyacrylamide gels, Western blotted on to Immobilon poly(vinylidene difluoride) membranes and gas-phase-sequenced. The identity of isolated glycoproteins was also obtained by the use of monoclonal or polyclonal antibodies and tryptic peptide maps. Five minor [GPIa, GPIc, GPIc*, GPIIa and GMP 140 (PADGEM)], as well as a major (GPIIIb) glycoprotein, were eluted at low salt concentrations. GPIIb-IIIa and GPIb were eluted at high salt concentrations. The N-terminal sequence of platelet GPIa was identical with that obtained by Takada & Hemler [(1989) J. Cell Biol. 109, 397-407]. However, the N-terminal sequence of platelet GPIc + Ic* and GPIIa were found to differ from those deduced from cDNA sequences isolated from human placenta or umbilical-vein endothelial-cell cDNA libraries. The combined use of f.p.l.c. and gas-phase sequencing techniques provides a very powerful tool to separate and characterize rapidly platelet or other cellular proteins for structural, immunological and functional studies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3