Chemoattractant-induced respiratory burst: increases in cytosolic Ca2+ concentrations are essential and synergize with a kinetically distinct second signal

Author:

FOYOUZI-YOUSSEFI Reyhaneh,PETERSSON Fredric1,LEW Daniel P.1,KRAUSE Karl-Heinz1,NÜSSE Oliver1

Affiliation:

1. Division of Infectious Diseases, University Hospital, 1211 Geneva 14, Switzerland

Abstract

The role of the cytosolic free Ca2+ concentration ([Ca2+]c) and its relationship to other second messengers in the signalling between chemoattractant [e.g. N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP)] receptors and the NADPH oxidase is still poorly understood. In this study, we have used thapsigargin, an inhibitor of the Ca2+-ATPase of intracellular stores, as a tool to selectively manipulate Ca2+ release from intracellular stores and Ca2+ influx across the plasma membrane. We thereby temporarily separated the Ca2+ signal from other signals generated by fMLP and analysed the consequences on the respiratory burst. Under all conditions investigated, the extent of fMLP-induced respiratory burst activation was critically determined by [Ca2+]c elevation. fMLP was unable to activate the respiratory burst without [Ca2+]c elevation. Thapsigargin-induced Ca2+ influx activated the respiratory burst in the absence of fMLP, but only to approx. 20% of the values observed in the presence of fMLP. The second signal generated by fMLP did not activate the respiratory burst by itself, but acted in synergy with [Ca2+]c elevation. The second signal was long lasting (> 15 min) provided that there was no rise in [Ca2+]c and that the receptor was continuously occupied. The second signal was inactivated by high [Ca2+]c elevation. Our results demonstrate that [Ca2+]c elevations are an essential step in the signalling between the fMLP receptor and NADPH oxidase. They also provide novel information about the properties of the second Ca2+-independent signal that activates the respiratory burst in synergy with [Ca2+]c.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3