Characterization and metabolic regulation of a liver-specific 5.4-kilobase mRNA whose synthesis is transcriptionally induced by carbohydrates and repressed by glucagon and cyclic AMP

Author:

Pichard A L,Munnich A,Meienhofer M C,Vaulont S,Simon M P,Marie J,Dreyfus J C,Kahn A

Abstract

Four clones derived from a carbohydrate-induced rat liver cDNA library were found to hybridize with a 5.4-kilobase mRNA species encoding a 36 kDa protein. This mRNA was abundant in the liver, barely detectable in adipocytes and kidney, and absent from the other tissues tested. In the liver, the mRNA was fully induced by a carbohydrate-rich diet, but was undetectable during both starvation and feeding with a protein-rich or lipid-rich diet. Adrenalectomized, thyroidectomized and diabetic animals did not express the mRNA in their liver when re-fed with the carbohydrate-rich diet. When these animals were given the missing hormone, the amount of hybridizable RNA returned to normal values, but administration of the hormone alone failed to induce mRNA synthesis in starved animals. Both glucagon and its second messenger, cyclic AMP, abolished the induction of the mRNA in re-fed animals. Exogenous insulin, whatever the dose, did not reverse the inhibitory action of glucagon. In an isolated nuclei transcription system, no detectable RNA transcripts were found in starved animals, whereas feeding the animals with the carbohydrate-rich diet led to a maximum rate of gene transcription. Although unidentified, this mRNA proves to be a remarkable marker of dietary and hormonal control of gene expression in vivo. It will provide a useful model for further analysis of the role of cyclic AMP in regulating the transcription of eukaryotic genes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3