Accelerated urokinase-receptor protein turnover triggered by interference with the addition of the glycolipid anchor

Author:

Avila Hector1,Wang Heng1,Chauhan Santosh1,Hartig Sean2,Boyd Douglas D.1

Affiliation:

1. Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77030, U.S.A.

2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A.

Abstract

u-PAR (urokinase-type plasminogen activator receptor), anchored to the cell surface via a glycolipid moiety, drives tumour progression. We previously reported that colon cancer cells (RKO clone 2 FS2), attenuated for in vivo tumorigenicity, are diminished >15-fold for u-PAR display when compared with their tumorigenic isogenic counterparts (RKO clone 2), this disparity not reflecting altered transcription/mRNA stability. FACS, confocal microscopy and Western blotting using a fused u-PAR–EGFP (enhanced green fluorescent protein) cDNA revealed a >14-fold differential in the u-PAR–EGFP signal between the isogenic cells, ruling out alternate splicing as a mechanism. Although metabolic labelling indicated similar synthesis rates, pulse–chase revealed accelerated u-PAR–EGFP turnover in the RKO clone 2 FS2 cells. Expression in RKO clone 2 cells of a u-PAR–EGFP protein unable to accept the glycolipid moiety yielded diminished protein amounts, thus mirroring the low endogenous protein levels evident with RKO clone 2 FS2 cells. Transcript levels for the phosphatidylglycan anchor biosynthesis class B gene required for glycolipid synthesis were reduced by 65% in RKO clone 2 FS2 cells, and forced overexpression in these cells partially restored endogenous u-PAR. Thus attenuated u-PAR levels probably reflects accelerated turnover triggered by inefficient addition of the glycolipid moiety.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3