Steroid-binding properties and stabilization of cytoplasmic glucocorticoid receptors from rat thymus cells

Author:

Bell Philip A.1,Munck Allan1

Affiliation:

1. Department of Physiology, Dartmouth Medical School, Hanover, N.H. 03755, U.S.A.

Abstract

1. A competitive binding assay was adapted for determination of the specific binding of glucocorticoids to cytoplasmic receptors from rat thymus cells. The steroid–receptor complexes prepared by incubation of a cytoplasmic fraction from rat thymus cells with [1,2-3H2]cortisol or with [1,2,4-3H3]triamcinolone acetonide had rates of dissociation at 37°C similar to those from intact cells. 2. The cytoplasmic receptor was unstable at 3°C, but the rate of inactivation was decreased in the presence of 2.5mm-EDTA. The steroid–receptor complex was stable. 3. Rate constants for association and for dissociation, and association constants, were determined for the interactions of cortisol, cortexolone, dexamethasone and triamcinolone acetonide with the cytoplasmic receptor at 3°C. Differences in the association constants for different steroids could largely be accounted for by the differences in the rate constants for dissociation, but the rate constants for association did not vary greatly; the implications of these findings for the nature of the steroid-binding site are discussed. 4. A cytoplasmic fraction prepared from cells which had been incubated at 37°C under anaerobic conditions bound much less [1,2-3H2]cortisol than did a fraction from aerobic cells, but the binding capacity was restored after exposure of the anaerobic cells to O2. 5. The specific binding of [1,2-3H2]-cortisol to intact thymus cells incubated aerobically was not affected by the presence of 0.1mm-cycloheximide, nor did this concentration of cycloheximide inhibit the recovery of specific binding observed when anaerobic cells were transferred to an aerobic atmosphere. 6. The energy dependence of specific binding of cortisol to the receptor is discussed with reference to possible mechanisms.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3