Biosynthesis of human acute-phase serum amyloid A protein (A-SAA) in vitro: the roles of mRNA accumulation, poly(A) tail shortening and translational efficiency

Author:

Steel D M1,Rogers J T2,DeBeer M C3,DeBeer F C3,Whitehead A S1

Affiliation:

1. Department of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland.

2. Department of Hematology, The Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, U.S.A.

3. Department of Medicine, University of Kentucky Medical Center and the Department of Veterans' Affairs Medical Center, Lexington, KY 50436, U.S.A.

Abstract

Human ‘acute-phase’ serum amyloid A protein (A-SAA) is a major acute-phase reactant (APR) and an apolipoprotein of high density lipoprotein 3 (HDL3). We have examined several parameters of A-SAA biosynthesis in PLC/PRF/5 hepatoma cells in response to monocyte conditioned medium (MoCM) and dual treatment with interleukin-1 beta and interleukin-6 (IL-1 beta + IL-6). Treatment of PLC/PRF/5 cells with MoCM or IL-1 beta + IL-6 caused a dramatic and rapid increase in A-SAA mRNA and protein synthesis; A-SAA mRNA was first detectable at 3 h, with peak levels reached by 24 h. A-SAA mRNA accumulation is accompanied by a gradual and homogeneous decrease in the length of the A-SAA poly(A) tail; the poly(A) tail shortening does not apparently affect the intrinsic stability of A-SAA mRNA. Analysis of RNA isolated from the ribonucleoprotein, monosome and polysome fractions of cytokine-treated PLC/PRF/5 cells showed that most A-SAA mRNA was associated with small polyribosomes, regardless of time post-stimulus, suggesting that the translational efficiency of A-SAA mRNA is constant throughout cytokine-driven induction. Moreover, the transit time of A-SAA protein out of the cell is also constant throughout the time course of induction. These data provide evidence of a paradox with regard to the transcriptional upregulation of A-SAA by IL-1 beta + IL-6 and the relative synthesis of A-SAA protein and suggest a role for post-transcriptional control of A-SAA biosynthesis during the acute phase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3