Sulphydryl agents modulate insulin- and epidermal growth factor (EGF)-receptor kinase via reaction with intracellular receptor domains: differential effects on basal versus activated receptors

Author:

Clark S1,Konstantopoulos N1

Affiliation:

1. University of Melbourne, Department of Medicine, PO Royal Melbourne Hospital, Parkville, Victoria 3050, Australia

Abstract

Sulphydryl reagents have been shown to produce a variety of effects on insulin-receptor structure and function. However, localization of these effects to specific receptor domains has not been attempted. We have investigated this question with insulin- and epidermal growth factor (EGF)-receptors (both are receptor tyrosine kinases but have different sulphydryl/disulphide structures within the external domain), and the insulin receptor kinase (IRK) protein consisting solely of the insulin-receptor cytoplasmic domain and exhibiting constitutive kinase activity. Results showed a differential response between basal and activated receptors. The physiological reductant GSH stimulated basal receptor autophosphorylation, but was either without effect (EGF) or inhibited (insulin) activated receptors, and occurred without visible reduction of receptor structure. These results contrast with those obtained with dithiothreitol which appears to activate phosphorylation in association with reduction of the extracellular insulin-receptor disulphides, but is without effect on the EGF receptor or the IRK protein. Alkylating agents N-ethylmaleimide (NEM) and iodoacetamide (IAM) had opposing effects on receptor autophosphorylation. However, only in the basal state was IAM able to protect receptors from the inhibitory effect of NEM. Our results suggest that complex sulphydryl interactions can occur within the cytoplasmic domain of insulin- and EGF-receptors to alter receptor kinase activity. The basal and activated state of receptors is not the same with respect to sulphydryl reagent action, possibly due to conformational change in the receptor induced by ligand (insulin, EGF) or constitutive (IRK) activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3