Long-term reduction of amplified ornithine decarboxylase sequences in human myeloma cells

Author:

Wahlfors J1,Myöhänen S1,Korhonen V P1,Alhonen L1,Jänne J1

Affiliation:

1. A. I. Virtanen Institute and Department of Biochemistry and Biotechnology, University of Kuopio, Kuopio, Finland

Abstract

(1) Human myeloma cell line Sultan, resistant to 20 mM difluoro-methylornithine (DFMO) owing to ornithine decarboxylase (ODC) gene amplification, was grown in the absence of DFMO for a period of 10 months. The gene copy number and methylation status of the ODC gene were monitored after withdrawal of DFMO. Moreover, levels of ODC mRNA, immunoreactive ODC protein, ODC activity and polyamine levels were recorded recurrently during the course of the study. (2) The results revealed that ODC gene copy number started to decrease after 4 weeks growth without DFMO, to a final level of less than 30% of the original gene dosage. The methylation status of the ODC gene, however, remained almost unaltered, displaying only a modest increase in methylation after 10 months without DFMO. The amount of ODC message dropped very rapidly to 75% of the original value, then started to decrease in a gene copy-number-dependent manner. The amount of ODC protein closely followed the levels of mRNA during the study, whereas the ODC activity, after a transient increase during the first week, decreased to half of the original level after 4 weeks. Between 6 and 16 weeks ODC activity stabilized to a fifth of the original value and no more changes were detected during the subsequent period of observation. (3) Due to the grossly elevated ODC enzyme activity, levels of putrescine and spermidine first peaked and then stabilized at 6 weeks after DFMO withdrawal. The final spermidine level was comparable with that of the parental Sultan cell line with only one copy of active ODC gene. However, putrescine content was strikingly elevated, being stabilized to a level that was 20 times higher than in parental cells. Spermine concentration was practically unchanged during the study. (4) According to the results obtained in this study, the abnormal level of ODC expression in human myeloma cells is suppressed partially at the level of transcription or post-transcriptionally, but it is not due to increased methylation of the gene. The major regulatory mechanism to compensate for a highly elevated ODC expression was modulation of the enzyme activity. After 10 months without DFMO, the cells still displayed about 20 times higher ODC activity and putrescine concentration than the myeloma cell line with a single copy of the ODC gene. They did not, however, show any signs of growth retardation or other features different from the parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3