Steroidogenic action of calcium ions in isolated adrenocortical cells

Author:

Podesta Ernesto J.1,Milani Alfred1,Steffen Hans1,Neher Robert1

Affiliation:

1. Friedrich Miescher-Institut, P.O. Box 273, CH-4002 Basel, Switzerland

Abstract

The corticotropin-induced increase of total intracellular and receptor-bound cyclic AMP in isolated rat adrenocortical cells was strictly dependent on extracellular Ca2+. A rise in bound cyclic AMP with rising Ca2+ concentrations was accompanied by a decrease in free cyclic AMP-receptor sites. A Ca2+-transport inhibitor abolished the rise in bound cyclic AMP induced by corticotropin. These data suggested that during stimulation by corticotropin some Ca2+ has to be taken up in order to promote the rise of the relevant cyclic AMP pool. In agreement with this view, adenylate cyclase activity from isolated cells proved also to be dependent on a sub-millimolar Ca2+ concentration in the presence of corticotropin and GTP. When cells were treated under specific conditions, corticosterone production could be activated by Ca2+ in the absence of corticotropin (cells primed for Ca2+). Ca2+-induced steroidogenesis of these cells, in the absence of corticotropin, was also accompanied by an increase in total intracellular and receptor-bound cyclic AMP, as was found previously with corticotropin-induced steroidogenesis in non-primed cells. Calcium ionophores increasing the cell uptake of Ca2+ were not able, however, to increase the cyclic AMP pools in non-primed cells, unlike corticotropin in nonprimed cells or Ca2+ in cells primed for Ca2+. It was concluded that during stimulation by either corticotropin or Ca2+ a possible cellular uptake of Ca2+ must be very limited and directed to a specific site which may affect the coupling of the hormone-receptor–adenylate cyclase complex.

Publisher

Portland Press Ltd.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3