MiR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression

Author:

Wang Xinyu12ORCID,Zhang Tingting2,Zhai Jianlong3,Wang Zhongli4,Wang Yan2,He Lili2,Ma Sai5,Xing Hanying6,Guo Yifang12ORCID

Affiliation:

1. 1College of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China

2. 2Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China

3. 3Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China

4. 4Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, China

5. 5Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China

6. 6Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei, China

Abstract

Abstract MicroRNA-21 (miR-21) plays an anti-apoptotic role following ischemia–reperfusion (I/R) injury (IRI) in vivo; however, its underlying mechanism remains unclear. The present study explored the effects of miR-21 and homeodomain interacting protein kinase 3 (HIPK3) on cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R) in vitro. To this end, the rat cardiomyocyte H9C2 cell line was exposed to H/R and the roles of miR-21 and HIPK3 in regulating cell viability and apoptosis were evaluated by cell counting kit-8 assay, terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling, and flow cytometry. Immunofluorescence and Western blotting were performed to detect the expression/phosphorylation of apoptosis-related proteins. miR-21 expression was measured with quantitative real-time polymerase chain reaction. The putative interaction between miR-21 and HIPK3 was evaluated using the luciferase reporter assay. Our results showed that (i) miR-21 overexpression or HIPK3 down-regulation significantly attenuated H9C2 cells apoptosis after H/R, (ii) suppression of miR-21 expression promoted apoptosis, (iii) miR-21 overexpression inhibited HIPK3 expression, (iv) HIPK3 was the direct and main target of miR-21, (v) miR-21/HIPK3 formed part of a reciprocal, negative feedback loop, and (vi) HIPK3 down-regulation decreased FAS-mediated apoptosis by inhibiting the phosphorylation of FADD, which subsequently inhibited the expression of BAX and cleaved caspase-3 and increased the expression of BCL2. Our study indicates that miR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression, which could eventually have important clinical implications for patients with acute myocardial infarction.

Funder

Science and Technology Bureau of Hebei Province

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3