Nitric oxide production in human endothelial cells stimulated by histamine requires Ca2+ influx

Author:

LANTOINE Frédérique1,IOUZALEN Lahcen2,DEVYNCK Marie-Aude2,BRUSSEL Elisabeth MILLANVOYE-van2,DAVID-DUFILHO Monique2

Affiliation:

1. Laboratoire d'Electrochimie et de Chimie Analytique, URA CNRS 216, Ecole Nationale Supérieure de Chimie Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France

2. Pharmacology, URA CNRS 1482, Paris V University, Necker Medical School, 156 rue de Vaugirard, 75015, Paris, France

Abstract

The causal relationships between cytosolic free-Ca2+ concentration ([Ca2+]i) increases and production of nitric oxide (NO) have been investigated mostly with indirect methods and remain unclear. Here we demonstrate, by direct real-time measurements of [NO] with a porphyrinic microsensor, that Ca2+ entry, but not an increase in [Ca2+]i, is required for triggering of NO production in human endothelial cells. Histamine, ranging from 0.1 to 100 μM, increased both NO production and [Ca2+]i when given in a single dose. However, histamine caused increased NO release but induced progressively smaller [Ca2+]i changes when cumulatively added. In the absence of a transmembrane Ca2+ gradient, no significant NO release was detectable, despite the marked Ca2+ peak induced by histamine. Inhibition of Ca2+ entry by SK&F 96365 abolished histamine-elicited NO production but only reduced the transient [Ca2+]i rise. The suppression of the sustained [Ca2+]i response under these two conditions suggests that NO release was closely associated with Ca2+ entry from the extracellular space. In addition, membrane depolarization, achieved by increasing the extracellular K+ concentration from 5 to 130 mM, reduced both the amplitude of histamine-induced sustained [Ca2+]i elevation and NO production. These results lead us to propose that the availability of numerous Ca2+ ions around the internal side of the plasma membrane would promote the association between nitric oxide synthase and calmodulin, thereby activating the enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3