Affiliation:
1. Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
2. Central Research Laboratory, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
Abstract
Stimulation of P2 receptors with micromolar concentration of ATP evokes a transient increase in [Ca2+]i (intracellular free Ca2+ concentration), primarily due to release of Ca2+ from intracellular stores; such stimulation also triggers almost complete suppression of thapsigargin-evoked sustained [Ca2+]i increase mediated through a store-operated Ca2+ entry pathway in rat brown adipocytes. We investigated the role of cytoskeletal actin in the inhibitory effect of the extracellular ATP on store-operated Ca2+ entry, using fura 2 fluorescence for continuous measurement of [Ca2+]i, and using Alexa fluor 488-phalloidin staining of actin. Disassembly of actin networks by cytochalasin D (1 μM) or latrunculin A (3 μM) prevented the inhibitory effect of ATP (10 μM) on the thapsigargin (100 nM)-evoked store-operated Ca2+ entry, without changing the effect of ATP in increasing [Ca2+]i. In normal cells, bath application of ATP induced a transient [Ca2+]i increase, consisting of a rapid increase (the rising phase) and the subsequent decrease (the declining phase) to a lower steady level despite the continued presence of the agonist. Disruption of actin assemblies did not significantly affect the rising phase, but prevented the declining phase. Cells incubated with 10 μM ATP for 4 min demonstrated marked accumulations of actin filaments at the cell periphery, showing protrusions at the cell surface; this actin-assembly process is mediated through P2 receptors. In cells treated with cytochalasin D or latrunculin A, extracellular ATP did not induce actin redistribution. These results suggest that the actin reorganization plays a role in ATP-induced inhibition of store-operated Ca2+ entry in rat brown adipocytes.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献