KEAP1–NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity

Author:

Dodson Matthew12,Redmann Matthew12,Rajasekaran Namakkal S.12,Darley-Usmar Victor12,Zhang Jianhua123

Affiliation:

1. Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, U.S.A.

2. Department of Pathology, University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35233, U.S.A.

3. Department of Veterans Affairs, Birmingham VA Medical Center, 700 19th Street South, Birmingham, AL 35233, U.S.A.

Abstract

Maintaining cellular redox status to allow cell signalling to occur requires modulation of both the controlled production of oxidants and the thiol-reducing networks to allow specific regulatory post-translational modification of protein thiols. The oxidative stress hypothesis captured the concept that overproduction of oxidants can be proteotoxic, but failed to predict the recent finding that hyperactivation of the KEAP1–NRF2 system also leads to proteotoxicity. Furthermore, sustained activation of thiol redox networks by KEAP1–NRF2 induces a reductive stress, by decreasing the lifetime of necessary oxidative post-translational modifications required for normal metabolism or cell signalling. In this context, it is now becoming clear why antioxidants or hyperactivation of antioxidant pathways with electrophilic therapeutics can be deleterious. Furthermore, it suggests that the autophagy–lysosomal pathway is particularly important in protecting the cell against redox-stress-induced proteotoxicity, since it can degrade redox-damaged proteins without causing aberrant changes to the redox network needed for metabolism or signalling. In this context, it is important to understand: (i) how NRF2-mediated redox signalling, or (ii) the autophagy-mediated antioxidant/reductant pathways sense cellular damage in the context of cellular pathogenesis. Recent studies indicate that the modification of protein thiols plays an important role in the regulation of both the KEAP1–NRF2 and autophagy pathways. In the present review, we discuss evidence demonstrating that the KEAP1–NRF2 pathway and autophagy act in concert to combat the deleterious effects of proteotoxicity. These findings are discussed with a special emphasis on their impact on cardiovascular disease and neurodegeneration.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3