The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved β-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event

Author:

Li B F L1,Holdup D1,Morton C A J1,Sinnott M L1

Affiliation:

1. Department of Organic Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.

Abstract

1. The first chemical step in the hydrolysis of galactosylpyridinium ions by the evolvant ebg enzyme is less sensitive to leaving-group acidity than in the case of the wild-type ebg enzyme, implying less glycone-aglycone-bond fission at the transition state. 2. The first chemical step in the hydrolysis of aryl galactosides by ebg enzyme is probably less sensitive to leaving-group acidity than in the case of ebg enzyme, possibly as a consequence of resulting in more effective proton donation to the leaving aglycone. 3. alpha-Deuterium kinetic isotope effects of 1.1(0) and beta-deuterium kinetic isotope effects of 1.0(0) were measured for the hydrolysis of galactosyl-enzyme intermediates derived from ebg and ebg enzymes: these effects are not compatible with reaction of the sugar ring through a 4C1-like conformation, or with an ionic glycosyl-enzyme intermediate. 4. The variation with pH of steady-state kinetic parameters for hydrolysis of p-nitrophenyl galactoside by ebg and ebg enzymes and of 3-methylphenyl beta-galactoside, 3,4-dinitrophenyl beta-galactoside and beta-galactosyl-3-bromopyridinium ion by ebg enzyme was measured. The steep, non-classical, fall in activity against p-nitrophenyl galactoside at low pH observed with ebg and ebg enzymes is not observed with ebg enzymes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3