Binding of quinoline analogues of echinomycin to deoxyribonucleic acid. Role of the chromophores

Author:

Fox K R,Gauvreau D,Goodwin D C,Waring M J

Abstract

Two novel antibiotics were isolated, designated compounds 1QN and 2QN respectively, having quinoline rings in place of one or both of the quinoxaline chromophores of echinomycin. Each removes and reverses the supercoiling of closed circular duplex DNA from bacteriophage PM2 in the fashion characteristic of intercalating drugs. For compound 1QN, the unwinding angle at I0.01 is almost twice that of ethidium, whereas for compound 2QN the value is indistinguishable from that of ethidium. Binding of both analogues produced changes in the viscosity of sonicated rod-like DNA fragments corresponding to double the helix extension found with ethidium, a feature characteristic of bifunctional intercalation by quinoxaline antibiotics. These results suggest that both compounds 1QN and 2QN behave as bifunctional intercalators but that compound 2QN produces only half the helix unwinding seen with compound 1QN and the natural quinoxalines. Binding curves for the interaction of both analogues with a variety of synthetic and naturally occurring nucleic acids were determined by solvent-partition analysis. Values for compound 2QN were also obtained by a fluorimetric method and found to agree well with the solvent-partition measurements. Compound 1QN bound most tightly to Micrococcus lysodeikticus DNA and, like echinomycin, exhibited a broad preference for (G + C)-rich DNA species. For compound 2QN no marked (G + C) preference was indicated, and the tightest binding among the natural DNA species studied was found with DNA from Escherichia coli. The two analogues also displayed different patterns of specificity in their interaction with synthetic nucleic acids. Compound 2QN bound to poly(dA-dT) slightly more tightly than to poly-(dG-dC), whereas compound 1QN displayed a large (approx. 11-fold) preference in the opposite sense. There was evidence of co-operativity in the binding to poly(dA-dT). It may be concluded that the chromophore moieties play an active role in determining the capacity of quinomycin antibiotics to recognize and bind selectively to specific sequences in DNA.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3