Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n−3 fatty acids: molecular mechanisms and potential clinical applications

Author:

Rodrigo Ramón1,Prieto Juan C.12,Castillo Rodrigo3

Affiliation:

1. Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile. Santiago, Chile

2. Department of Cardiology, Clinical Hospital, University of Chile. Santiago, Chile

3. Pathophysiology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile

Abstract

The role of oxidative stress in ischaemic heart disease has been thoroughly investigated in humans. Increased levels of ROS (reactive oxygen species) and RNS (reactive nitrogen species) have been demonstrated during ischaemia and post-ischaemic reperfusion in humans. Depending on their concentrations, these reactive species can act either as benevolent molecules that promote cell survival (at low-to-moderate concentrations) or can induce irreversible cellular damage and death (at high concentrations). Although high ROS levels can induce NF-κB (nuclear factor κB) activation, inflammation, apoptosis or necrosis, low-to-moderate levels can enhance the antioxidant response, via Nrf2 (nuclear factor-erythroid 2-related factor 2) activation. However, a clear definition of these concentration thresholds remains to be established. Although a number of experimental studies have demonstrated that oxidative stress plays a major role in heart ischaemia/reperfusion pathophysiology, controlled clinical trials have failed to prove the efficacy of antioxidants in acute or long-term treatments of ischaemic heart disease. Oral doses of vitamin C are not sufficient to promote ROS scavenging and only down-regulate their production via NADPH oxidase, a biological effect shared by vitamin E to abrogate oxidative stress. However, infusion of vitamin C at doses high enough to achieve plasma levels of 10 mmol/l should prevent superoxide production and the pathophysiological cascade of deleterious heart effects. In turn, n−3 PUFA (polyunsaturated fatty acid) exposure leads to enhanced activity of antioxidant enzymes. In the present review, we present evidence to support the molecular basis for a novel pharmacological strategy using these antioxidant vitamins plus n−3 PUFAs for cardioprotection in clinical settings, such as post-operative atrial fibrillation, percutaneous coronary intervention following acute myocardial infarction and other events that are associated with ischaemia/reperfusion.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3