Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L

Author:

NEUHAUS H. Ekkehard1,SCHULTE Norbert1

Affiliation:

1. Pflanzenphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastrasse 11, 49069 Osnabrück, Germany

Abstract

C3 or crassulacean acid metabolism (CAM)-induced Mesembryanthemum crystallinum plants perform nocturnal starch degradation which is linear with time. To analyse the composition of metabolites released by isolated leaf chloroplasts during starch degradation we developed a protocol for the purification of starch-containing plastids. Isolated chloroplasts from C3 or CAM-induced M. crystallinum plants are also able to degrade starch. With respect to the endogenous starch content of isolated plastids the rate of starch degradation in these organelles is close to the observed rates of starch degradation in intact leaves. The combined presence of Pi, ATP, and oxaloacetate is identified to be the most positive effector combination to induce starch mobilization. The metabolic flux through the oxidative pentose-phosphate pathway in chloroplasts isolated from CAM-induced M. crystallinum is less than 3.5% compared with other metabolic routes of starch degradation. Here we report that starch-degrading chloroplasts isolated from CAM-induced M. crystallinum plants use exogenously supplied oxaloacetate for the synthesis of malate. The main products of starch degradation exported into the incubation medium by these chloroplasts are glucose 6-phosphate, 3-phosphoglyceric acid, dihydroxyacetone phosphate and glucose. The identification of glucose 6-phosphate as an important metabolite released during starch degradation is in contrast to the observations made on all other types of plastids analysed so far, including chloroplasts isolated from M. crystallinum in the C3 state. Therefore, we analysed the transport properties of isolated chloroplasts from M. crystallinum. Surprisingly, both types of chloroplasts, isolated from either C3 or CAM-induced plants, are able to transport glucose 6-phosphate in counter exchange with endogenous Pi, indicating the presence of a glucose 6-phosphate translocator as recently demonstrated to occur in other types of plastids. The composition of metabolites released and the stimulatory effect of oxaloacetate on the rate of starch degradation are discussed with respect to the acidification observed for CAM leaves during the night.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3