Biochemical properties of recombinant human β-glucuronidase synthesized in baby hamster kidney cells

Author:

Gehrmann M C1,Opper M1,Sedlacek H H1,Bosslet K1,Czech J1

Affiliation:

1. Research Laboratories of Behringwerke AG, P.O. Box 1140, 35001 D-Marburg, Germany

Abstract

The cDNA sequence encoding human beta-glucuronidase [Oshima, Kyle, Miller, Hoffmann, Powell, Grubb, Sly, Troplak, Guise and Gravel (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 685-689] was expressed in baby hamster kidney (BHK) cells. After purification from the culture supernatant in one step by use of immunoaffinity chromatography, the biochemical properties of the enzyme were examined. With a pH optimum of 4.0, a Km of 1.3 mM and thermal stability up to 68 degrees C, this protein has characteristics very similar to those described for beta-glucuronidase from human placenta [Brot, Bell and Sly (1978) Biochemistry 17, 385-391. However, the recombinant product has several structural properties not previously reported for beta-glucuronidase isolated from natural sources. First, recombinant beta-glucuronidase is synthesized as a tetramer consisting of two disulphide-linked dimers. As can be inferred from the cDNA sequence, the enzyme possesses five cysteine residues after cleavage of the signal peptide. By introducing a C-terminal truncation, we eliminated the last cysteine at position 644. In the mutant, covalent linkage between two monomers is no longer observed, indicating that Cys-644 is involved in intermolecular disulphide-bond formation. The functional role of the disulphide bond remains elusive, as it was shown that (i) intracellular transport of the mutant is not impaired and (ii) it is still able to form an enzymically active tetramer. A second feature that has not previously been observed for beta-glucuronidase from any origin is the existence of two enzymically active species for recombinant beta-glucuronidase, when examined by gel filtration on a TSK 3000 column. With apparent molecular masses of 380 kDa and 190 kDa we propose that they represent tetramers and dimers respectively. Partial N-terminal sequencing and electrophoresis under denaturing conditions revealed that the dimers consist of subunits that have been proteolytically processed at their C-terminus losing 3-4 kDa in peptide mass. Controlled proteolysis demonstrates that the enzyme's overall protein backbone as well as its activity are resistant to a number of proteases. Only the C-terminal portion is susceptible to protease action, and the disulphide-linked form is readily converted into non-disulphide-bonded subunits. Pulse-chase analysis shows that human beta-glucuronidase remaining intracellular in BHK cells after synthesis undergoes a similar proteolytic processing event, i.e. a reduction in mass of 3-4 kDa.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3