Phytochrome three-dimensional structures and functions

Author:

Hughes Jon1

Affiliation:

1. Plant Physiology, Justus Liebig University, Giessen, Germany

Abstract

The complete three-dimensional sensory module structures of the Pr ground state of Synechocystis 6803 Cph1 and the unusual Pfr ground state of the bacteriophytochrome PaBphP (PDB codes 2VEA and 3C2W respectively) have now been solved, revealing an asymmetrical dumbbell form made up of a PAS (Period/ARNT/Singleminded)–GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) bidomain carrying the chromophore and the smaller PHY (phytochrome-specific) domain. The PHY domain is structurally related to the GAF family, but carries an unusual tongue-like structure which contacts the larger lobe to seal the chromophore pocket. In 2VEA, the tongue makes intimate contact with the helical N-terminus; both the N-terminus and the tongue structures are quite different in 3C2W. As expected, the structures reveal ZZZssa and ZZEssa chromophore conformations in 2VEA and 3C2W respectively, associated with tautomeric differences in several nearby tyrosine residues. Two salt bridges on opposite sides of the chromophore, as well as the associations of the C-ring propionates also differ. It is still unclear, however, which of these structural differences are associated with bacteriophytochromes compared with Cph1 and plant-type phytochromes, the unusual 3C2W Pfr ground state functionality compared with the Pr ground state or the Pr compared with Pfr photoisomerism. To access the latter unambiguously, both Pr and Pfr structures of the same molecule are required. New solid-phase NMR data for Cph1 in the Pr, Pfr and freeze-trapped intermediate states reveal unexpected changes in the chromophore during Pfr→Pr photoconversion. These, together with our efforts to solve the three-dimensional structure of a complete phytochrome molecule are also described.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3