Abstract
Purified L-3-glycerophosphate dehydrogenase from pig brain mitochondria interacts with ubiquinone-10 and ubiquinol-cytochrome c oxidoreductase (Complex III) from bovine heart mitochondria to reconstitute antimycin-sensitive L-3-glycerophosphate- cytochrome c oxidoreductase. This activity is completely dependent on the two enzymes and largely dependent on ubiquinone-10. Reconstitution requires that the two enzymes should be simultaneously present in the same membranous aggregate produced by removal of detergent from the enzymes. Reconstitution by removing detergent by dialysis or dilution is inefficient because of self-aggregation of the dehydrogenase. Highly efficient reconstitution can be achieved if the enzymes are co-precipitated by addition of ethanol. The rate with reconstituted enzyme approaches that expected from the turnover of the dehydrogenase with ubiquinone-1 as acceptor. The behaviour of the reconstituted system shows some of the characteristics expected for a stoicheiometric association of one molecule of dehydrogenase with one molecule of Complex III. On raising the phospholipid/protein ratio, the dehydrogenase and Complex III appear to operate as independent enzymes acting in sequence. These effects are very similar to those observed for the interaction of NADH dehydrogenase and Complex III and are explained in terms of the model proposed by Heron, Ragan & Trumpower [(1978) biochem. J. 174, 791-800].
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献