Phosphorylation of calmodulin on Tyr99 selectively attenuates the action of calmodulin antagonists on type-I cyclic nucleotide phosphodiesterase activity.

Author:

Saville M K1,Houslay M D1

Affiliation:

1. Department of Biochemistry, University of Glasgow, Scotland, U.K.

Abstract

Tyr99 phosphorylation of calmodulin appears to induce a distinct conformational change as is evident from the profound attenuation of the Ca(2+)-induced enhancement of calmodulin's mobility seen during SDS/PAGE. The effect of this conformational change appears to be localized, in that both calmodulin and P-Tyr99-calmodulin show identical dose-dependent activation profiles for stimulation of a physiological effector, type-I (Ca2+/calmodulin-stimulated) cyclic nucleotide phosphodiesterase (PDE) activity and their presence engenders similar dose-dependent PDE activation by Ca2+. In marked contrast with this, with P-Tyr99-calmodulin there were 3-4-fold increases in the IC50 values for inhibition of type-I PDE activity by the calmodulin antagonists TFP and W7, together with increased values for Hill coefficients for inhibition. The polybasic compound poly(L-lysine) potently augmented the action of calmodulin as a PDE activator, causing an approx. 7-fold decrease in the EC50 value for activation of PDE. It is suggested (i) that the Tyr99 phosphorylation of calmodulin, which occurs within a high-affinity Ca(2+)-binding domain, induces a localized conformational change in this peptide which can selectively attenuate the action of calmodulin antagonists on type-I PDE activity while leaving unaffected Ca(2+)-dependent activation, and (ii) that polybasic substances on complexing with calmodulin may serve to enhance the sensitivity of type-I PDE to activation by this regulatory peptide.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3