Affiliation:
1. Laboratoire de Chimie Physiologique, Université Catholique de Louvain, International Institute of Cellular and Molecular Pathology, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
Abstract
Glucosamine, a potent inhibitor of glucokinase (hexokinase IV or D), was used to estimate the contribution of this enzyme to glucose phosphorylation in freshly isolated rat hepatocytes and its sensitivity to fructose 6-phosphate in situ. Experiments with radiolabelled glucosamine indicated that this amino sugar, at concentrations of 5 or 40 mM, readily penetrated hepatocytes to reach in 1 min a total (i.e., glucosamine+metabolites) intracellular concentration equal to 0.8-1.2-fold its extracellular concentration. In marked contrast, N-acetylglucosamine barely penetrated the cells. The detritiation of [2-3H]glucose, used to estimate glucose phosphorylation in intact cells, was inhibited by glucosamine much more potently than by N-acetylglucosamine, half-maximal effects being reached at about 2.5 and 30 mM respectively. Extrapolation of the data indicated that about 12% of the detritiation was resistant to glucosamine. Dihydroxyacetone (10 mM), lactate (10 mM) + pyruvate (1 mM), and glucagon (1 microM) increased up to 8-fold the concentration of hexose 6-phosphates (glucose 6-phosphate+fructose 6-phosphate) and, against expectations, modestly decreased the detritiation rate measured in the absence of glucosamine. In the presence of 40 mM glucosamine, these agents increased the detritiation rate, which then positively correlated with the concentration of hexose 6-phosphates. This hexose 6-phosphates-dependent detritiation was sensitive to inhibition by vanadate, and was also catalysed by gel-filtered cell-free extracts, as well as by liver microsomes in the presence of phosphoglucoisomerase; it can be explained by an exchange reaction catalysed by glucose-6-phosphatase. When this exchange reaction is taken into account, it appears that the rate of glucose detritiation attributable to glucokinase decreases when the concentration of hexose 6-phosphates increases. This is in agreement with the known effect of fructose 6-phosphate to potentiate the inhibition of glucokinase by its regulatory protein.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献