Glucosamine-sensitive and -insensitive detritiation of [2-3H]glucose in isolated rat hepatocytes: a study of the contributions of glucokinase and glucose-6-phosphatase

Author:

Van Schaftigen E1

Affiliation:

1. Laboratoire de Chimie Physiologique, Université Catholique de Louvain, International Institute of Cellular and Molecular Pathology, 75 Avenue Hippocrate, B-1200 Brussels, Belgium

Abstract

Glucosamine, a potent inhibitor of glucokinase (hexokinase IV or D), was used to estimate the contribution of this enzyme to glucose phosphorylation in freshly isolated rat hepatocytes and its sensitivity to fructose 6-phosphate in situ. Experiments with radiolabelled glucosamine indicated that this amino sugar, at concentrations of 5 or 40 mM, readily penetrated hepatocytes to reach in 1 min a total (i.e., glucosamine+metabolites) intracellular concentration equal to 0.8-1.2-fold its extracellular concentration. In marked contrast, N-acetylglucosamine barely penetrated the cells. The detritiation of [2-3H]glucose, used to estimate glucose phosphorylation in intact cells, was inhibited by glucosamine much more potently than by N-acetylglucosamine, half-maximal effects being reached at about 2.5 and 30 mM respectively. Extrapolation of the data indicated that about 12% of the detritiation was resistant to glucosamine. Dihydroxyacetone (10 mM), lactate (10 mM) + pyruvate (1 mM), and glucagon (1 microM) increased up to 8-fold the concentration of hexose 6-phosphates (glucose 6-phosphate+fructose 6-phosphate) and, against expectations, modestly decreased the detritiation rate measured in the absence of glucosamine. In the presence of 40 mM glucosamine, these agents increased the detritiation rate, which then positively correlated with the concentration of hexose 6-phosphates. This hexose 6-phosphates-dependent detritiation was sensitive to inhibition by vanadate, and was also catalysed by gel-filtered cell-free extracts, as well as by liver microsomes in the presence of phosphoglucoisomerase; it can be explained by an exchange reaction catalysed by glucose-6-phosphatase. When this exchange reaction is taken into account, it appears that the rate of glucose detritiation attributable to glucokinase decreases when the concentration of hexose 6-phosphates increases. This is in agreement with the known effect of fructose 6-phosphate to potentiate the inhibition of glucokinase by its regulatory protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3