Affiliation:
1. Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, and The Chemical Laboratory, University of Cambridge, Cambridge CB2 1EN, U.K.
Abstract
1. Cytoplasmic acetoacetyl-CoA thiolase was highly purified in good yield from rat liver extracts. 2. Mg2+ inhibits the rate of acetoacetyl-CoA thiolysis but not the rate of synthesis of acetoacetyl-CoA. Measurement of the velocity of thiolysis at varying Mg2+ but fixed acetoacetyl-CoA concentrations gave evidence that the keto form of acetoacetyl-CoA is the true substrate. 3. Linear reciprocal plots of velocity of acetoacetyl-CoA synthesis against acetyl-CoA concentration in the presence or absence of desulpho-CoA (a competitive inhibitor) indicate that the kinetic mechanism is of the Ping Pong (Cleland, 1963) type involving an acetyl-enzyme covalent intermediate. In the presence of CoA the reciprocal plots are non-linear, becoming second order in acetyl-CoA (the Hill plot shows a slope of 1.7), but here this does not imply co-operative phenomena. 4. In the direction of acetoacetyl-CoA thiolysis CoA is a substrate inhibitor, competing with acetoacetyl-CoA, with a Ki of 67μm. Linear reciprocal plots of initial velocity against concentration of mixtures of acetoacetyl-CoA plus CoA confirmed the Ping Pong mechanism for acetoacetyl-CoA thiolysis. This method of investigation also enabled the determination of all the kinetic constants without complication by substrate inhibition. When saturated with substrate the rate of acetoacetyl-CoA synthesis is 0.055 times the rate of acetoacetyl-CoA thiolysis. 5. Acetoacetyl-CoA thiolase was extremely susceptible to inhibition by an excess of iodoacetamide, but this inhibition was completely abolished after preincubation of the enzyme with a molar excess of acetoacetyl-CoA. This result was in keeping with the existence of an acetyl-enzyme. Acetyl-CoA, in whose presence the overall reaction could proceed, gave poor protection, presumably because of the continuous turnover of acetyl-enzyme in this case. 6. The kinetic mechanism of cytoplasmic thiolase is discussed in terms of its proposed role in steroid biosynthesis.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献