COLD-PCR: a new platform for highly improved mutation detection in cancer and genetic testing

Author:

Li Jin1,Makrigiorgos G. Mike1

Affiliation:

1. Division of Genomic Stability and Division of DNA Repair and Medical Physics and Biophysics, Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, U.S.A.

Abstract

PCR is widely employed as the initial DNA amplification step for genetic testing and cancer biomarker detection. However, a key limitation of PCR-based methods, including real-time PCR, is the inability to selectively amplify low levels of variant alleles in a wild-type allele background. As a result, downstream assays are limited in their ability to identify subtle genetic changes that can have a profound impact on clinical decision-making and outcome or that can serve as cancer biomarkers. We developed COLD-PCR (co-amplification at lower denaturation temperature-PCR) [Li, Wang, Mamon, Kulke, Berbeco and Makrigiorgos (2008) Nat. Med. 14, 579–584], a novel form of PCR that amplifies minority alleles selectively from mixtures of wild-type and mutation-containing sequences irrespective of the mutation type or position on the sequence. Consequently, COLD-PCR amplification from genomic DNA yields PCR products containing high-prevalence variant alleles that can be detected. Since PCR constitutes a ubiquitous initial step for almost all genetic analysis, COLD-PCR provides a general platform to improve the sensitivity of essentially all DNA-variation detection technologies including Sanger sequencing, pyrosequencing, single molecule sequencing, mutation scanning, mutation genotyping or methylation assays. COLD-PCR combined with real-time PCR provides a new approach to boost the capabilities of existing real-time mutation detection methods. We replaced regular PCR with COLD-PCR before sequencing or real-time mutation detection assays to improve mutation detection-sensitivity by up to 100-fold and identified novel p53/Kras/EGFR (epidermal growth factor receptor) mutations in heterogeneous cancer samples that were missed by all existing methods. For clinically relevant micro-deletions, COLD-PCR enabled exclusive amplification and isolation of the mutants. COLD-PCR is expected to have diverse applications in the fields of biomarker identification and tracing, genomic instability, infectious diseases, DNA methylation testing and prenatal identification of fetal alleles in maternal blood.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3