An alternative pathway for the biosynthesis of isoprenoid compounds in bacteria

Author:

Pandian S,Saengchjan S,Raman T S

Abstract

The pattern of incorporation of radioactivity from [1-14C]acetate and [2-14C]acetate into the polyprenyl side-chain of ubiquinones in bacteria (Azotobacter vinelandii, Pseudomonas sesami, Escherichia coli and Rhodopseudomonas capsulata) was studied. For this purpose, a new degradation method involving a modified Barbier-Wieland reaction of laevulinic acid was developed, and used along with the iodoform reaction. Both C-1 and C-2 of acetate were incorporated exclusively into C-2 of laevulinic acid suggesting that the well-known pathway through acetoacetyl-CoA (‘acetoacetate pathway)’ was not operative in these bacteria. An alternative pathway (‘acetolactate pathway’), starting with pyruvate and acetaldehyde as the distal precursors, and utilizing the reactions of leucine and valine metabolism, was postulated. It was also postulated that C-1 of acetate is incorporated not directly, but after oxidation to CO2. The pattern of incorporation of radioactivity from [U-14C]valine, [U-14C]alanine and NaH14CO3 into the side-chain of ubiquinone of R. capsulata was in agreement with the operation of the ‘acetolactate pathway’.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3