The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines

Author:

Krieger-Brauer H I1,Kather H1

Affiliation:

1. Klinisches Institut für Herzinfarktforschung an der Medizinischen Universitätsklinik, Bergheimerstrasse 58, 69115 Heidelberg, Germany

Abstract

Previous work demonstrated that human fat-cells possess a plasma-membrane-bound H2O2-generating system that is activated by insulin. Here we show that this system is under antagonistic control by various hormones and cytokines that typically act through several distinct receptor families. Similarly to insulin, oxytocin and tumour necrosis factor alpha acted as stimulators of NADPH-dependent H2O2 generation, whereas isoprenaline, a beta-adrenergic agonist, had inhibitory effects. Surprisingly, the acidic and basic isoforms of fibroblast growth factor as well as homodimeric platelet-derived growth factor AA and BB had antagonistic stimulatory and inhibitory effects on NADPH-dependent H2O2 generation. The agents tested acted at discrete ligand-specific receptors and their mechanisms of action were membrane-delimited and occurred in the absence of ATP. These findings implied that established pathways of signal transduction, including receptor kinases or second-messenger-dependent protein kinases A and C, were not involved and placed the stimulus-sensitive H2O2-generating system in a position comparable with adenylate cyclase. It was concluded that the stimulus-sensitive H2O2-generating system of human fat-cells meets all criteria of a universal signal-transducing system for hormones and cytokines that may link ligand binding to cell-surface receptors to changes in the intracellular redox equilibrium.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3