Ca2+ signals mediated by Ins(1,4,5)P3-gated channels in rat ureteric myocytes

Author:

BOITTIN François-Xavier1,COUSSIN Frédéric1,MOREL Jean-Luc1,HALET Guillaume1,MACREZ Nathalie1,MIRONNEAU Jean

Affiliation:

1. Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, CNRS UMR 5017, Université de Bordeaux II, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France

Abstract

Localized Ca2+-release signals (puffs) and propagated Ca2+ waves were characterized in rat ureteric myocytes by confocal microscopy. Ca2+ puffs were evoked by photorelease of low concentrations of Ins(1,4,5)P3 from a caged precursor and by low concentrations of acetylcholine; they were also observed spontaneously in Ca2+-overloaded myocytes. Ca2+ puffs showed some variability in amplitude, time course and spatial spread, suggesting that Ins(1,4,5)P3-gated channels exist in clusters containing variable numbers of channels and that within these clusters a variable number of channels can be recruited. Immunodetection of Ins(1,4,5)P3 receptors revealed the existence of several spots of fluorescence in the confocal cell sections, supporting the existence of clusters of Ins(1,4,5)P3 receptors. Strong Ins(1,4,5)P3 photorelease and high concentrations of acetylcholine induced Ca2+ waves that originated from an initiation site and propagated in the whole cell by spatial recruitment of neighbouring Ca2+-release sites. Both Ca2+ puffs and Ca2+ waves were blocked selectively by intracellular applications of heparin and an anti-Ins(1,4,5)P3-receptor antibody, but were unaffected by ryanodine and intracellular application of an anti-ryanodine receptor antibody. mRNAs encoding for the three subtypes of Ins(1,4,5)P3 receptor and subtype 3 of ryanodine receptor were detected in these myocytes, and the maximal binding capacity of [3H]Ins(1,4,5)P3 was 10- to 12-fold higher than that of [3H]ryanodine. These results suggest that Ins(1,4,5)P3-gated channels mediate a continuum of Ca2+ signalling in smooth-muscle cells expressing a high level of Ins(1,4,5)P3 receptors and no subtypes 1 and 2 of ryanodine receptors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Excitation-Contraction Coupling in Ureteric Smooth Muscle: Mechanisms Driving Ureteric Peristalsis;Advances in Experimental Medicine and Biology;2019

2. Calcium Channels in Vascular Smooth Muscle;Advances in Pharmacology;2017

3. Inositol trisphosphate receptors in smooth muscle cells;American Journal of Physiology-Heart and Circulatory Physiology;2012-06-01

4. Mitochondrial organization and Ca2+ uptake;Biochemical Society Transactions;2012-01-19

5. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells;American Journal of Physiology-Cell Physiology;2010-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3