Mechanism of acylphosphatase inactivation by Woodward's reagent K

Author:

PAOLI Paolo1,FIASCHI Tania1,CIRRI Paolo1,CAMICI Guido1,MANAO Giampaolo1,CAPPUGI Gianni1,RAUGEI Giovanni1,MONETI Gloriano2,RAMPONI Giampietro1

Affiliation:

1. Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy

2. Centro Interdipartimentale di Servizi di Spettrometria di Massa, Università di Firenze, Pieraccini 6, 50139 Firenze, Italy

Abstract

The organ common-type (CT) isoenzyme of acylphosphatase is inactivated by Woodward's reagent K (WRK) (N-ethyl-5-phenylisoxazolium-3ʹ-sulphonate) at pH 6.0. The inactivation reaction follows apparent pseudo first-order kinetics. The dependence of the reciprocal of the pseudo first-order kinetic constant (kobs) on the reciprocal WRK concentration reveals saturation kinetics, suggesting that the WRK forms a reversible complex with the enzyme before causing inactivation. Competitive inhibitors, such as inorganic phosphate and ATP, protect the enzyme from WRK inactivation, suggesting that this reagent acts at or near to the enzyme active site. The reagent-enzyme adduct, which elicits a strong absorption band with λmax at 346 nm, was separated from unreacted enzyme by reverse phase HPLC and the modified protein was cleaved with endoproteinase Glu-C to produce fragments. The HPLC fractionation gave two reagent-labelled peptides (peak 1 and peak 2) that were analysed by ion-spray MS and sequenced. The former is VFFRKHTQAE (residues 20-29 of human CT acylphosphatase) and the latter IFGKVQGVFFRKHTQAE (residues 13-29). MS demonstrated that both peptides are WRK adducts. A fragment ion with m/z of 1171, which is present in the mass spectrum of peak 1, has been identified as a WRK adduct of the peptide fragment 20-26. The λmax at 346 nm of WRK adduct suggests that the modified residue is His-25. Five recombinant enzymes mutated in residues included in the 20-29 polypeptide stretch have been produced. Analysis of their reactivities with WRK demonstrates that His-25 is the molecular target of the reagent as its modification causes the inactivation of the enzyme. Since both His-25 → Gln and His-25 → Phe mutants maintain high catalytic activity, we suggest that the observed enzyme inactivation is caused by the reagent (covalently bound to His-25), which shields the active site.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3