Functional expression of a low-affinity zinc uptake transporter (FrZIP2) from pufferfish (Takifugu rubripes) in MDCK cells

Author:

Qiu Andong1,Hogstrand Christer1

Affiliation:

1. King's College London, Nutritional Sciences Research Division, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.

Abstract

Zinc is a vital micronutrient to all organisms and it is therefore very important to determine the mechanisms that regulate cellular zinc uptake. Previously, we reported on zinc uptake transporters from zebrafish (Danio rerio; DrZIP1) and Fugu pufferfish (Takifugu rubripes; FrZIP1) that facilitated cellular zinc uptake of high affinity (Km<0.5 μM) in both CHSE214 [chinook salmon (Oncorhynchus tshawytscha) embryonic 214] cells and Xenopus laevis oocytes. To investigate additional biochemical pathways of zinc uptake in fish, we molecularly cloned the second fish member (FrZIP2) of the SLC39 subfamily II from Fugu pufferfish gill. Functional characterization suggests that FrZIP2 stimulated zinc uptake in a temperature-, time-, concentration- and pH-dependent manner when overexpressed in MDCK cells (Madin–Darby canine kidney cells). In comparison with FrZIP1 and DrZIP1 (<0.5 μM), FrZIP2 appears to represent a low-affinity zinc uptake transporter (Km=13.6 μM) in pufferfish. FrZIP2 protein was selective for zinc, but it might also transport Cu2+, since 20 times excess of Cu2+ completely abolished its zinc uptake activity. The zinc uptake by FrZIP2 was stimulated in a slightly acidic medium (pH 5.5–6.5) and was completely blocked at pH 7.5 and above, suggesting that an inward H+ gradient might provide a driving force for zinc transport by FrZIP2. Furthermore, FrZIP2-mediated zinc uptake activity was slightly inhibited by 0.5 mM HCO3−, indicating that FrZIP2 may employ a different mechanism of zinc translocation from the assumed HCO3−-coupled zinc transport used by human SLC39A2. The FrZIP2 gene was expressed in all the tissues studied herein, with especially high levels in the ovary and intestines. Thus FrZIP2 may be a prominent zinc uptake transporter of low affinity in many cell types of Fugu pufferfish.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference47 articles.

1. Zinc coordination, function, and structure of zinc enzymes and other proteins;Vallee;Biochemistry,1990

2. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae;MacDiarmid;EMBO J.,2000

3. Synaptically released zinc: physiological functions and pathological effects;Frederickson;Biometals,2001

4. The physiology and toxicology of zinc in fish. In Toxicology of Aquatic Pollution;Hogstrand,1996

5. Nutritive metal uptake in teleost fish;Bury;J. Exp. Biol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3