Lipid–protein interactions as determinants of membrane protein structure and function

Author:

Dowhan William1,Bogdanov Mikhail1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, 6431 Fannin Street, Houston, TX 77030, U.S.A.

Abstract

To determine how the lipid environment affects membrane protein structure and function, strains of Escherichia coli were developed in which normal phospholipid composition can be altered or foreign lipids can be introduced. The properties of LacY (lactose permease) were investigated as a function of lipid environment. Assembly of LacY in membranes lacking PE (phosphatidylethanolamine) results in misorientation of the N-terminal six-TM (transmembrane domain) helical bundle with loss of energy-dependent uphill transport and retention of energy-independent downhill transport. Post-assembly introduction of PE results in nearly native orientation of TMs and restoration of uphill transport. Foreign lipids with no net charge can substitute for PE in supporting native LacY topology, but restoration of uphill transport is dependent on native topology and the proper folding of a solvent-exposed domain. Increasing the positive charge density of the cytoplasmically exposed surface of LacY counters TM misorientation in the absence of neutral lipids, demonstrating that charge interactions between these domains and the surface of the membrane bilayer are determinants of TM orientation. Therefore membrane protein organization or reorganization is determined either during initial assembly or post-insertionally through direct interactions between the protein and the lipid environment, which affects the topogenic potency of opposing charged residues as topological signals independent of the translocon.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3