Expanded substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3α/7α/7β/17β/20β/21-HSD

Author:

SHAFQAT Naeem1,MARSCHALL Hanns-Ulrich2,FILLING Charlotta1,NORDLING Erik3,WU Xiao-Qiu1,BJÖRK Lars3,THYBERG Johan4,MÅRTENSSON Eva1,SALIM Samina1,JÖRNVALL Hans1,OPPERMANN Udo1

Affiliation:

1. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden

2. Department of Medicine, Karolinska Institutet, Huddinge University Hospital, SE-141 86 Stockholm, Sweden

3. Biovitrum AB, SE-112 87 Stockholm, Sweden

4. Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden

Abstract

17β-Hydroxysteroid dehydrogenases (17β-HSDs) catalyse the conversion of 17β-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17β-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conversion patterns. We analysed 17β-HSD type 10 (17β-HSD10) from humans and Drosophila, the latter known to be essential in development. In addition to the known hydroxyacyl-CoA dehydrogenase, and 3α-OH and 17β-OH activities with sex steroids, we here demonstrate novel activities of 17β-HSD10. Both species variants oxidize the 20β-OH and 21-OH groups in C21 steroids, and act as 7β-OH dehydrogenases of ursodeoxycholic or isoursodeoxycholic acid (also known as 7β-hydroxylithocholic acid or 7β-hydroxyisolithocholic acid respectively). Additionally, the human orthologue oxidizes the 7α-OH of chenodeoxycholic acid (5β-cholanic acid, 3α,7α-diol) and cholic acid (5β-cholanic acid). These novel substrate specificities are explained by homology models based on the orthologous rat crystal structure, showing a wide hydrophobic cleft, capable of accommodating steroids in different orientations. These properties suggest that the human enzyme is involved in glucocorticoid and gestagen catabolism, and participates in bile acid isomerization. Confocal microscopy and electron microscopy studies reveal that the human form is localized to mitochondria, whereas Drosophila 17β-HSD10 shows a cytosolic localization pattern, possibly due to an N-terminal sequence difference that in human 17β-HSD10 constitutes a mitochondrial targeting signal, extending into the Rossmann-fold motif.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3