N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo

Author:

BISOGNO Tiziana1,MELCK Dominique1,BOBROV Mikhail Yu.2,GRETSKAYA Natalia M.2,BEZUGLOV Vladimir V.2,DE PETROCELLIS Luciano3,DI MARZO Vincenzo1

Affiliation:

1. Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy

2. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia

3. Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy

Abstract

We reported previously that synthetic amides of polyunsaturated fatty acids with bioactive amines can result in substances that interact with proteins of the endogenous cannabinoid system (ECS). Here we synthesized a series of N-acyl-dopamines (NADAs) and studied their effects on the anandamide membrane transporter, the anandamide amidohydrolase (fatty acid amide hydrolase, FAAH) and the two cannabinoid receptor subtypes, CB1 and CB2. NADAs competitively inhibited FAAH from N18TG2 cells (IC50 = 19–100µM), as well as the binding of the selective CB1 receptor ligand, [3H]SR141716A, to rat brain membranes (Ki = 250–3900nM). The arachidonoyl (20:4 ω6), eicosapentaenoyl (20:5 ω3), docosapentaenoyl (22:5 ω3), α-linolenoyl (18:3 ω3) and pinolenoyl (5c,9c,12c 18:3 ω6) homologues were also found to inhibit the anandamide membrane transporter in RBL-2H3 basophilic leukaemia and C6 glioma cells (IC50 = 17.5–33µM). NADAs did not inhibit the binding of the CB1/CB2 receptor ligand, [3H]WIN55,212-2, to rat spleen membranes (Ki > 10µM). N-arachidonyl-dopamine (AA-DA) exhibited 40-fold selectivity for CB1 (Ki = 250nM) over CB2 receptors, and N-docosapentaenoyl-dopamine exhibited 4-fold selectivity for the anandamide transporter over FAAH. AA-DA (0.1–10µM) did not displace D1 and D2 dopamine-receptor high-affinity ligands from rat brain membranes, thus suggesting that this compound has little affinity for these receptors. AA-DA was more potent and efficacious than anandamide as a CB1 agonist, as assessed by measuring the stimulatory effect on intracellular Ca2+ mobilization in undifferentiated N18TG2 neuroblastoma cells. This effect of AA-DA was counteracted by the CB1 antagonist SR141716A. AA-DA behaved as a CB1 agonist in vivo by inducing hypothermia, hypo-locomotion, catalepsy and analgesia in mice (1–10mg/kg). Finally, AA-DA potently inhibited (IC50 = 0.25µM) the proliferation of human breast MCF-7 cancer cells, thus behaving like other CB1 agonists. Also this effect was counteracted by SR141716A but not by the D2 antagonist haloperidol. We conclude that NADAs, and AA-DA in particular, may be novel and useful probes for the study of the ECS.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Cannabinoids in Oral Cancer;International Journal of Molecular Sciences;2024-01-12

2. Potential of dietary hemp and cannabinoids to modulate immune response to enhance health and performance in animals: opportunities and challenges;Frontiers in Immunology;2023-12-04

3. The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption;Nature Communications;2023-10-25

4. Cannabinoids as multifaceted compounds;Phytochemistry;2023-08

5. Cannabis;Natural Products and their Bioactives in Antidiabetic Drug Discovery;2023-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3