Ellman's-reagent-mediated regeneration of trypanothione in situ: substrate-economical microplate and time-dependent inhibition assays for trypanothione reductase

Author:

HAMILTON Chris J.1,SARAVANAMUTHU Ahilan2,EGGLESTON Ian M.1,FAIRLAMB Alan H.2

Affiliation:

1. Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, Carnelley Building, University of Dundee, Dundee DD1 4HN, U.K.,

2. Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, U.K.

Abstract

Trypanothione reductase (TryR) is a key enzyme involved in the oxidative stress management of the Trypanosoma and Leishmania parasites, which helps to maintain an intracellular reducing environment by reduction of the small-molecular-mass disulphide trypanothione (T[S]2) to its di-thiol derivative dihydrotrypanothione (T[SH]2). TryR inhibition studies are currently impaired by the prohibitive costs of the native enzyme substrate T[S]2. Such costs are particularly notable in time-dependent and high-throughput inhibition assays. In the present study we report a protocol that greatly decreases the substrate quantities needed for such assays. This is achieved by coupling the assay with the chemical oxidant 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), which can rapidly re-oxidize the T[SH]2 product back into the disulphide substrate T[S]2, thereby maintaining constant substrate concentrations and avoiding deviations from rate linearity due to substrate depletion. This has enabled the development of a continuous microplate assay for both classical and time-dependent TryR inhibition in which linear reaction rates can be maintained for 60min or more using minimal substrate concentrations (<1μM, compared with a substrate Km value of 30μM) that would normally be completely consumed within seconds. In this manner, substrate requirements are decreased by orders of magnitude. The characterization of a novel time-dependent inhibitor, cis-3-oxo-8,9b-bis-(N1-acrylamidospermidyl)-1,2,3,4,4a,9b-hexahydrobenzofuran (PK43), is also described using these procedures.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3