Tricarboxylic acid-cycle and related enzymes in restricted facultative methylotrophs

Author:

Colby J,Zatman L J

Abstract

The isolation is described of pure cultures of three non-methane-utilizing methylotrophic bacteria which, together with the previously described Bacillus PM6, have a very limited range of growth substrates; these organisms are designated “restricted facultative’ methylotrophs. Two of these isolates, W6A and W3A1, grow only on glucose out of 50 non-C1 compounds tested, whereas the third isolate S2A1 and Bacillus PM6 grow on betaine, glucose, gluconate, alanine, glutamate, citrate and nutrient agar, but not on any of a further 56 non-C1 compounds. Crude sonic extracts of trimethylamine-grown and glucose-grown W6A and W3A1 isolates, and of trimethylamine-grown C2A1 (an obligate methylotroph) contain (i) no detectable 2-oxogltarate dehydrogenase activity, (ii) very low or zero specific activities of succinate dehydrogenase and succinyl-CoA synthetase and (iii) NAD+-dependent isocitrate dehydrogenase activity. Extracts of trimethylamine-grown PM6 and S2A1 methylotrophs have (i) very low 2-oxoglutarate dehydrogenase specific activities, (ii) comparatively high specific activities of succinate dehydrogenase, malate dehydrogenase and succinyl-CoA synthetase and (iii) NADP+-dependent isocitrate dehydrogenase activity but no NAD+-dependent isocitrate dehydrogenase activity. The activities of most of these enzymes are increased during growth on glucose, alanine, glutamate or citrate, but only very low 2-oxoglutarate dehydrogenase activities are present under all growth conditions. The restricted facultative methylotrophs grow on certain non-C1 compounds in the absence of 2-oxoglutarate dehydrogenase and, in some cases, of other enzymes of the tricarboxylic acid cycle; these lesions cannot therefore be the sole cause of obligate methylotrophy.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3