Abstract
1. To gain insight into a putative role for mitochondria in silicon metabolism, mitochondrial uptake (by which it is meant the removal from the medium) of silicic acid [Si(OH)4] was studied under conditions minimizing SI(OH)4 polymerization. 2. Measurements of mitochondrial respiration and swelling indicated indirectly a significant uptake of Si(OH)4 as a weak acid, but this was not confirmed when 31Si(OH)4 was used as a tracer. 31Si(OH)4 occupied a mitochondrial volume similar to that of 3H2O and was relatively unaffected by mitochondrial energy status and by the pH gradient across the mitochondrial inner membrane. 3. Uptake was directly proportional to Si(OH)4 concentration in the range 0-3 mM. 4. The uptake consisted of two components: under all conditions examined, the greater quantity, amounting to 1-2nmol of Si(OH)4/mg of mitochondrial protein, was bound, a major portion of it external to the inner membrane, with the lesser quantity free within the matrix space. 5. Equilibration of 31Si(OH)4 between medium and matrix was a slow process, having a half-time of approx. 10 min at 22 degrees C. 6. Mersalyl and N-ethylmaleimide inhibited the uptake by preferentially lowering the amount of Si(OH)4 bound. Their action was somewhat variable, depending on the precise nature of the suspending medium, and suggesting that the bound material may represent polymerized forms of Si(OH)4. 7. It is concluded that Si(OH)4 may penetrate the mitochondrial inner membrane by a simple diffusion mechanism.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献