Harnessing wound healing and regeneration for tissue engineering

Author:

Metcalfe A.D.1,Ferguson M.W.J.1

Affiliation:

1. UK Centre for Tissue Engineering (UKCTE), Faculty of Life Sciences, University of Manchester, Manchester, U.K.

Abstract

Biomedical science has made major advances in understanding how cells grow into functioning tissue and the signalling mechanisms used to achieve this are slowly being dissected. Tissue engineering is the application of that knowledge to the building or repairing of organs, including skin, the largest organ in the body. Generally, engineered tissue is a combination of living cells and a supporting matrix. Besides serving as burn coverings, engineered skin substitutes can help patients with diabetic foot ulcers. Today, most of these ulcers are treated with an approach that includes antibiotics, glucose control, special shoes and frequent cleaning and bandaging. The results of such treatments are often disappointing and ineffectual, and scarring remains a major problem, mechanically, cosmetically and psychologically. Within our group we are attempting to address this by investigating novel approaches to skin tissue engineering. We are identifying novel therapeutic manipulations to improve the degree of integration between a tissue engineered dermal construct and the host by both molecular manipulation of growth factors but also by understanding and harnessing mechanisms of regenerative biology. For the purpose of this summary, we will concentrate primarily on the latter of these two approaches in that we have identified a novel mouse mutant that completely and perfectly regenerates skin and cartilaginous components following ear injury. This experimental animal will allow us to characterize not only novel genes involved in the regeneration process but also to utilize cells from such animals in artificial skin equivalents to assess their behaviour compared with normal cells. This approach should allow us to create a tissue-engineered substitute, which more closely resembles the normal regional microanatomy and physiology of the skin, allowing better integration to the host with minimal or no scarring.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3