Affiliation:
1. Department of Diabetes, Central Clinical School, Monash University, Australia
2. Baker IDI Heart and Diabetes Institute, Melbourne, Australia
Abstract
Oxidative stress is a consequence of up-regulation of pro-oxidant enzyme-induced reactive oxygen species (ROS) production and concomitant depletion of antioxidants. Elevated levels of ROS act as an intermediate and are the common denominator for various diseases including diabetes-associated macro-/micro-vascular complications and hypertension. A range of enzymes are capable of generating ROS, but the pro-oxidant enzyme family, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), are the only enzymes known to be solely dedicated to ROS generation in the vascular tissues, kidney, aortas and eyes. While there is convincing evidence for a role of NOX1 in vascular and eye disease and for NOX4 in renal injury, the role of NOX5 in disease is less clear. Although NOX5 is highly up-regulated in humans in disease, it is absent in rodents. Thus, so far it has not been possible to study NOX5 in traditional mouse or rat models of disease. In the present review, we summarize and critically analyse the emerging evidence for a pathophysiological role of NOX5 in disease including the expression, regulation and molecular and cellular mechanisms which have been demonstrated to be involved in NOX5 activation.
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献