Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen

Author:

Zhou Q1,Smith J B1,Grossman M H2

Affiliation:

1. Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.

2. Deparment of Pediatrics, Temple University School of Medicine,St. Christopher's Hospital for Children, Philadelphia, PA 19134, U.S.A.

Abstract

A 50 kDa protein that inhibits platelet adhesion to collagen has been isolated from snake venom of Crotalus atrox (western diamondback rattlesnake) and has been named ‘catrocollastatin’. The cDNA cloning of catrocollastatin has been accomplished. A full-length cDNA of 2310 bp with an open reading frame between nucleotides 51 and 1880 was obtained. The deduced amino acid sequence consists of 609 amino acids. The cDNA-predicted amino acid sequence is highly similar to that of haemorrhagic metalloproteinase jararhagin from Bothrops jararaca venom, HR1B from Trimeresurus flavoviridis, Ht-e from C. atrox and trigramin from T. gramineus. Like jararhagin and HR1B, catrocollastatin is a multidomain molecule composed of an N-terminal domain, a metalloproteinase domain, a disintegrin-like domain and a cysteine-rich C-terminal domain. In the disintegrin-like domain, the frequently seen RGD (Arg-Gly-Asp) sequence is replaced by SECD (Ser-Glu-Cys-Asp). This cDNA was expressed in Spodoptera frugiperda (fall armyworm) (Sf9) insect cells using a baculovirus expression system. Like native catrocollastatin, the expressed protein is capable of selectively blocking collagen-induced platelet aggregation. This is the first full-length clone of a high-molecular-mass haemorrhagin to be expressed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3