Solution structure and catalytic mechanism of human protein histidine phosphatase 1

Author:

Gong Weibin12,Li Yifei12,Cui Gaofeng13,Hu Jicheng12,Fang Huaming12,Jin Changwen123,Xia Bin123

Affiliation:

1. Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China

2. College of Life Sciences, Peking University, Beijing 100871, China

3. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Abstract

Protein histidine phosphorylation exists widely in vertebrates, and it plays important roles in signal transduction and other cellular functions. However, knowledge about eukaryotic PHPT (protein histidine phosphatase) is still very limited. To date, only one vertebrate PHPT has been discovered, and two crystal structures of hPHPT1 (human PHPT1) have been solved. However, these two structures gave different ligand-binding sites and co-ordination patterns. In the present paper, we have solved the solution structures of hPHPT1 in both Pi-free and Pi-bound states. Through comparison of the structures, along with a mutagenesis study, we have determined the active site of hPHPT1. In contrast with previous results, our results indicate that the active site is located between helix α1 and loop L5. His53 was identified to be the catalytic residue, and the NH groups of residues His53, Ala54 and Ala96 and the OH group of Ser94 should act as anchors of Pi or substrate by forming H-bonds with Pi. On the basis of our results, a catalytic mechanism is proposed for hPHPT1: the imidazole ring of His53 serves as a general base to activate a water molecule, and the activated water would attack the substrate as a nucleophile in the catalysis; the positively charged side chain of Lys21 can help stabilize the transition state. No similar catalytic mechanism can be found in the EzCatDB database.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3