The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+

Author:

Halestrap A P1

Affiliation:

1. Department of Biochemistry, University of Bristol, U.K.

Abstract

1. The rate of ADP-stimulated respiration with various substrates and the matrix volume of rat heart mitochondria were measured over a range of osmolarities of the medium. 2. The rate of oxidation of palmitoylcarnitine (in the presence of malate) was stimulated 7-fold by increasing the matrix volume from 0.6 to 1.0 microliter/mg of protein. Oxidation of octanoate showed a similar sensitivity to the matrix volume, whereas oxidation of other substrates showed little sensitivity until the volume fell below 0.7 microliter/mg of protein. 3. The matrix volume of heart mitochondria incubated under physiological conditions was about 0.8 microliter/mg of protein. 4. Low concentrations of valinomycin added to mitochondria incubated under such physiological conditions could activate the rate of ADP-stimulated palmitoylcarnitine oxidation by at least 100%. 5. Decreasing the matrix volume increased the reduction of the electron-transferring flavoprotein (ETF), suggesting an effect on electron flow between ETF and ubiquinone, as has been observed for liver mitochondria [Halestrap & Dunlop (1986) Biochem. J. 239, 559-565]. 6. A rapid decrease in light-scattering by heart mitochondria incubated in State 4 was induced by addition of Ca2+, reaching 50% of the maximal effect after about 30 s at 30 degrees C and with K0.5 for Ca2+ of 0.3 microM. This was not associated with a change in matrix volume, and is discussed in terms of a conformational change whose identity remains to be determined. 7. However, incubation of heart mitochondria at 37 degrees C in the presence of 0.65 microM-Ca2+ for 4 min did increase the matrix volume significantly, by 0.181 +/- 0.029 microliter/mg of protein (n = 7, P less than 0.001), similar to the Ca2+-induced changes observed with liver mitochondria [Halestrap, Quinlan, Whipps & Armston (1986) Biochem. J. 236, 779-787]. 8. The possible significance of these results in the co-ordinate regulation of fatty acid oxidation and the citric acid cycle in the heart responding to increased work load or hormonal stimulation is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3