Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells

Author:

BUXTON Penelope1,ZHANG Xiang-Ming1,WALSH Bong2,SRIRATANA Absorn1,SCHENBERG Irina1,MANICKAM Elizabeth1,ROWE Tony1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia

2. Metabolex, Inc., 3876 Bay Center Place, Hayward, CA 94545, U.S.A.

Abstract

Members of the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) superfamily [syntaxins, VAMPs (vesicle-associated membrane proteins) and SNAP25 (synaptosome-associated protein-25)-related proteins] are required for intracellular membrane-fusion events in eukaryotes. In neurons, assembly of SNARE core complexes comprising the presynaptic membrane-associated SNAREs syntaxin 1 and SNAP25, and the vesicle-associated SNARE VAMP2, is necessary for synaptic vesicle exocytosis. Several accessory factors have been described that associate with the synaptic SNAREs and modulate core complex assembly or mediate Ca2+ regulation. One such factor, Snapin, has been reported to be a brain-specific protein that interacts with SNAP25, and regulates association of the putative Ca2+-sensor synaptotagmin with the synaptic SNARE complex [Ilardi, Mochida and Sheng (1999) Nat. Neurosci. 2, 119–124]. Here we demonstrate that Snapin is expressed ubiquitously in neuronal and non-neuronal cells. Furthermore, using protein–protein-interaction assays we show that Snapin interacts with SNAP23, the widely expressed homologue of SNAP25, and that the predicted C-terminal helical domain of Snapin contains the SNAP23-binding site. Subcellular localization experiments revealed that Snapin is a soluble protein that exists in both cytosolic and peripheral membrane-bound pools in adipocytes. Moreover, association of Snapin with the plasma membrane was detected in cells overexpressing a Snapin–green fluorescent protein fusion protein. Finally, we show that Snapin is able to form a ternary complex with SNAP23 and syntaxin 4, suggesting that it is a component of non-neuronal SNARE complexes. An important implication of our results is that Snapin is likely to perform a general role in SNARE-mediated vesicle fusion events in non-neuronal cells in addition to its participation in Ca2+-regulated neurosecretion.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3