Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei

Author:

PAL Arun1,HALL Belinda S.1,JEFFRIES Tim. R.1,FIELD Mark C.1

Affiliation:

1. Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences & Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AY, U.K.

Abstract

The mammalian-infective bloodstream form of Trypanosoma brucei possesses a highly active endocytotic system. Evasion of the host immune response by T. brucei is dependent on antigenic variation of VSG (variant surface glycoprotein), but additional mechanisms for removal of surface-bound antibody also operate. Four Rab proteins, Tb (trypanosomal) RAB4, 5A, 5B and 11 are located to the endosomal system; TbRAB5A and TbRAB11 co-localize with internalized anti-VSG antibody and transferrin. A live cell assay was used to record a single cycle of endocytosis of anti-VSG IgG and transferrin, their subsequent degradation within the endosomal system and exocytosis of the products. TbRAB5A and TbRAB11 were involved in the overall process of endocytosis, degradation and exocytosis, whereas TbRAB5B and TbRAB4 were not implicated. The kinetics of anti-VSG IgG and transferrin recycling depend on the nucleotide state of TbRAB5A and TbRAB11. These data, together with previous work, suggest that IgG and transferrin initially enter a TbRAB5A sorting endosome and are most probably recycled subsequently via a TbRAB11-dependent step. Analysis of the recycled IgG and transferrin demonstrated extensive degradation of these recycled proteins. Degradation of transferrin was enhanced in cells expressing increased amounts of TbRAB5A or TbRAB11 with a Ser→Asn mutation, but was decreased when active TbRAB11 was overexpressed. The extent of degradation of anti-VSG IgG was found to be unaffected by mutant Rab protein expression. The presence of an efficient mechanism for the removal of IgG bound to the external surface of T. brucei and its subsequent proteolysis within the recycling system suggests a role for this pathway in immune evasion.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3