Two HNF-1 binding sites govern the glucose repression of the human sucrase-isomaltase promoter

Author:

RODOLOSSE Annie1,CARRIERE Véronique1,ROUSSET Monique,LACASA Michel12

Affiliation:

1. INSERM U178, Unité de Recherches sur la Différenciation Cellulaire Intestinale, 16 avenue Paul-Vaillant-Couturier, 94807 Villejuif cedex, France

2. Université Pierre et Marie Curie, 4 Place Jussieu, 75251 Paris Cedex 05, France

Abstract

We have previously shown, using the Caco-2 clone PF11, that glucose represses transcription of the human sucrase-isomaltase (SI) gene and that the -370/+30 fragment of the SI gene conferred glucose-regulated expression on a heterologous gene. Different fragments beginning at the already characterized SI footprint (SIF) 1 (-53/-37), SIFR (-153/-129) or SIF3 (-176/-156) elements [Wu, Chen, Forslund and Traber (1994) J. Biol. Chem. 269, 17080–17085] were tested, in comparison with the -370/+30 fragment, for their capacity to inhibit reporter gene expression under high-glucose (25 mM) conditions. Unlike SIF1 and SIFR, the addition of the HNF (hepatocyte nuclear factor)-1-binding element SIF3 to the promoter fragment was required for repression under high-glucose conditions. This effect was enhanced when the SI promoter was extended to position -370, indicating that the -370/-176 region contains elements that may co-operate with SIF3 to increase the metabolic control of the SI promoter. We have characterized an additional HNF-1-binding site near to and upstream from SIF3; SIF4. By mutagenesis of the three HNF-1-binding elements we show that the two distal HNF-1-recognition sites are the most important for the glucose regulation of the SI gene. Moreover, this glucose regulation was abolished in PF11 cells overexpressing vHNF-1C (variant HNF, an isoform of the HNF-1 family). We thus propose that the differential binding of HNF-1-family proteins to their DNA targets on the SI promoter constitutes the molecular mechanism that controls the glucose regulation of the SI gene transcription.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3